

CLASS	-XII (CBSE)	(2014-2015)	
QUES Type of Question	Mark per Question	SKEAK UP Total No. of Questions	Total Marks
VSA	1	6	06
LA-I	4	13	52
LA-II	6	7	42
Total 26			100

- 1. *No chapter wise weightage.* Care to be taken to cover all the chapters.
- 2. The above template is only a sample. Suitable internal variations may be made for generating similar templates Keeping the overall weightage to different form of questions and typology of questions same

Sr.	TOPICS	MARKS					
No		V SA(1M)	S A (4M)	LA	Total		
				(6M)	Ma	rks	
1 a)	Relation & Function	1	1	Nil	5		
1 b)	Binary operation					10	
1 c)	Inverse Trig. Func	1	1 OR	Nil	5		
2.a)	Matrices	1+1+1		1	9	13	
b)	Determinant	1+1+1	1 OR	Nil	4		
3.a.	Continuity, Differentiability	Nil	1 + 1 OR	Nil	8		
b.	Applications Of Derivative	Nil	1 +1	1 OR	14		
c.	Integrals	Nil	1 + 1	Nil	8	44	
d	Applications Of Integrals	Nil	Nil	1 OR	6		
e	Differential Equations	Nil	1+1		8		
4.a	Vectors	1	1	1	11	17	
b	Three Dimensional Geometry	1		1	6	1/	
5.	Linear Programming	Nil	Nil	1		6	
6.	Probability	Nil	1 OR	1		10	
	TOTAL	6	13	7		100	

CHAPTERWISE MARKS in This Paper (CBSE)

"Arise! Awake! Stop not till the Goal is reached" 2/4

[Model Test-07(Q)/XII (14-15) 19th Dec'14] MODEL TEST

[FM-100 /Time-180 min.]

(Pre- CBSE Board's Exam'15_)

General Instructions :

i) All questions are compulsory.

- The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and section C comprises of 07 questions of six marks each.
- iii) All questions in Section **A** are to be answered in **one** word, **one** sentence or as per the exact requirement of the question.
- iv) There is no overall choice. However, internal choice has been provided in **04** questions of **four** marks each and **02** questions of **six** marks each. You have to attempt only one of the alternatives in all such questions.
- v) Use of calculators is **no**t permitted. You may use logarithmic tables, if required

<u>Section-A</u> (01 mark each)

- 1. Which of the following represents a function $f: R \rightarrow R$? Why? a) $v = x^2$ b) $v^2 = x$
- 2. Find the principal value of $\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$.

3. For what value of x, is the matrix $\begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$ is singular?

- 4. If matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then find the value of k.
- 5. If A is a invertible matrix of order 3×3 , then express $|A^{-1}|$ in terms of |A|.
- 6. Find the direction ratios of the line 6x 1 = 2x + 3 = 5 z

Section-B (04 marks each)

- 7. Show that the relation S in the set $A = \{x \in Z : 0 \not\leq x \not\leq 12\}$ given by
 - $S = \{(a, b): a, b \in \mathbb{Z}, |a-b| \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1.

8. Express
$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$$
, $-\frac{\pi}{2}$, $x < \frac{3\pi}{2}$ in the simplest form.
Solve: $\tan^{-1}\left(\frac{x-1}{x-2}\right)$ tan $\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$

Confidence 🚇

Prove that, $\begin{vmatrix} 1+a^2 & ab & ac \\ ab & 1+b^2 & bc \\ ca & cb & 1+c^2 \end{vmatrix} = (1+a^2+b^2+c^2).$ 9. Prove that, $\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ca - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2$ Discuss the continuity of the function f(x) given by $f(x) = \begin{cases} \frac{1}{e^x} - 1 \\ \frac{1}{e^x} + 1 \\ 0 \end{cases}$ 10. at x=0If y = a.cos(log x) + b sin(log x), (a, b are constant), prove that, $x^2 \frac{d^2 y}{d^2 y} + x$. $\frac{dy}{dy} + y = 0.$ 11. dx OR If $x = a.\sin t$ and $y = a\left(\cos t + \log \tan \frac{t}{2}\right)$, find, $\frac{d^2y}{dx^2}$. Using differential find the approximate value of $\sqrt[3]{63}$. 12. A particle moves along the curve $\sqrt{2x^3 - 3y} \neq 3 = 0$. Find the points on the curve at which the ordinate is 13. changing twice as fast as the abscissa of the points. Evaluate: $\int \frac{dx}{x(x^5+1)}$ 14. Evaluate : $\int_{0}^{4} (|x|+|x-2|+|x-4|) dx$ 15. Solve the following differential equation: $(x^3 + y^3) dy - x^2 y dx = 0$ 16. Solve the differential equation $(\tan^{-1}y - x) dy = (1 + y^2) dx$. 17. For non-zero vectors \vec{a} , \vec{b} , \vec{c} , show that, $(\vec{a}-\vec{b})$, $(\vec{b}-\vec{c})$, $(\vec{c}-\vec{a})$ are always coplanar. 18. 19. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die. OR. An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question? (06 marks each) Section-C

20.

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.

OR.

Using integration, find the area of the triangle ABC, coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).

- 21. Using matrix method, solve the following system of equation x + y + z = 6, x + 2z = 7, 3x+y+z=12.
- 22. Vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$. Find the angle between \vec{a} and \vec{b} .
- 23. Show that of all the rectangles with a given perimeter, the square has the largest area. OR,

Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

- 24. Find the coordinates of the foot of the perpendicular & the perpendicular distance of the point P(3, 2, 1) from the plane 2x-y+z+1=0. Find also, the image of the point in the plane.
- 25. Bag I contains 3 red & 4 black balls & BagII contains 5 red & 6 black balls. One ball is drawn at random from one of the bags & is found to be red. Find the probability that it was drawn from Bag II.
- 26. A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time. In a day the factory has the availability of not more than 42 hours of machine time and 24 hours of craftman's time. If the profit on a racket and on a bat is ₹20 and ₹ 10 respectively, find the number of tennis rackets and crickets bats that the factory must manufacture to earn the maximum profit. Make it as an *L*.P.P. and solve graphically.

"Success is never an Accident. It is the result of Right Decision at the Right Time."

Paper Submitted by : SAMIR BASU Basu-Niketan, Bonmasjid, Burdwan, West Bengal, Pin- 713101 Mob-9434100810 Email_barunabasu@gmail.com